2006 DOE/NETL ENVIRONMENTAL CONTROLS CONFERENCE

SESSION 2: TECHNIQUES FOR MANAGING SULFUR TRIOXIDE

MAY 18, 2006

SO₃ INTRODUCTION/OVERVIEW

William Ellison PE Ellison Consultants Monrovia, MD 21770-9316

PURPOSE OF INITIAL, 1998, ONLY PRIOR, DOE SO₃ CONFERENCE

- GUIDE NEW RESEARCH
- CHARACTERIZING THE SO₃ PROBLEM
 - ADDRESS SO₃ INTERFERENCES
 - ASSESS UNCERTAINTIES
 - INTEGRATE ACTION WITH EPA [1998]

INITIAL, YEAR-1998, TRI REPORTING TO GOVERNMENT BY ELECTRIC UTILITIES

	% OF TOTAL TOXINS
HCI	50
SO ₃ /H ₂ SO ₄	25*
Other	<u>25</u>
Total	100

^{*}Electric utility industry rivals chemical industry in annual mass amount of emission.

ADDITIVE USE IN SO₃ ABATEMENT UPSTREAM OF RAW GAS PARTICULATE COLLECTOR

- Ammonia
- Magnesia

DISTRIBUTION OF H₂SO₄(L), ACID MIST, THAT FORMS IN THE AIR PREHEATER

- Sorption by fly ash, gasborne or deposited
- Flue gas exit stream
- Leakage to combustion air stream

INDICATION OF POTENTIAL PROBLEMS ABSENT SCR (AND ITS CATALYTIC, SO₂-TO-SO₃ CONVERSION)

• Average SO₃ concentration may be as high as 50 ppm, exceeding 3% of gross SO₂ content.

• With unique, high iron content, e.g. western Kentucky coal: up to 10% conversion of SO₂ to SO₃ occurs.

UNIT-WIDE SO₂/SO₃ BEHAVIOR

- An increment of SO₃ generation occurs in the furnace.
- Temperature-dependent, catalyzed SO₂-to-SO₃ conversion occurs in the convective pass, reaching a maximum rate at 1,300°F (704°C) flue gas temperature.
- Rate of SO₃ formation by SCR, increasing SO₃ perhaps by 20± ppm, is greatest at 660-750°F (350-400°C) and above.
- Below 600°F (316°C) SO₃ hydrates to gaseous sulfuric acid: H₂SO₄(v).
- Condensation of H₂SO₄(v) occurs at and below the sulfuric acid dew point temperature, typically as high as 280°F (138°C).

INFLUENCE OF SOOT BLOWING

- Low-temperature blowing/cleaning (1,100 to 1,600°F, i.e. 593 to 871°C), in removing deposits, increases the rate of SO₂-to-SO₃ conversion due to tube-metal surface effect.
- However, (contrariwise), presence of such ash deposits, typically iron-oxide-laden, significantly increases SO₃ formation.

INSIGHTS FROM MARCH, 1998, (MOST RECENT) DOE/FETC CONFERENCE ON SO₃

• A boiler model study showed that the condition of superheater tube surfaces radically influences catalytic SO₃ formation:

- CLEAN: 20 ppm

MODERATELY FOULED: 70 ppm

- HEAVILY FOULED: 32 ppm

• A large, high-SO₃, electric utility unit (without SCR) achieves 60% removal of SO₃ in the air preheater leading to its significant fouling (and derating). Across its exit crosssection, SO₃ varies laterally from 10 to 25 ppm.

IMPACT ON AIR PREHEATER OF H₂SO₄ CONDENSATION IS EXACERBATED BY:

- Air to gas-side leakage
- Displacement of flue gas into air stream
- Enhancement of corrosion due to acid-wetted ash/salt deposit

SCR CONCERNS RE SO₃ (AND NH₃)

- •Design for 70% max. NO_x removal.
- Limit ammonia slip to 5 ppm.
- •Avoid a potential SCR increase in SO₃ of 20 ppm.

• If A Unit Has Significant, Air-Preheater-Related, SO₃ Problems, SCR Retrofitting Can Be Expected To Make The Situation Worse.

• If An Uncontrolled Unit Does Not Have Significant SO₃ Problems, Adequate SCR Retrofit System Design and Operation Should Not Lead To Increased Problems in Boiler System Performance or Maintenance.

CANDIDATE METHODS FOR MEASUREMENT OF SO₃ CONCENTRATION

- Controlled Condensation method (CONSOL, Inc.)
- Severn Science, wet-chemistry, continuous analyzer (Environmental Energy Services)

ACTION OF VANADIUM IN PETROLEUM-BASED RESIDUAL FUELS

- Residual Fuel Oil: 100 ppm SO₃ periodically
- Petroleum Coke: 158 ppm SO₃ peak value

OPERATION OF WET SCRUBBERS

- 0 to 70% SO₃/H₂SO₄(v) removal
- 0% H₂SO₄(L) removal
- Variable degree of conversion of H₂SO₄(v) to H₂SO₄(L), sulfuric acid mist aerosol, in the air preheater

OPERATION OF DRY SCRUBBERS

Non water-saturating design

98-99% SO₃/H₂SO₄(v) removal,
 (greater than that of SO₂)

THRUST OF 2006 SO₃ CONFERENCE

- Emphasis on high-sulfur coal
- New data on rate of boiler SO₃ formation
- Broad benefits of depressing SO₃ concentration
- Wet ESP advancements: membrane type, new Siemens type
- Role of CFD Modeling

Con't →

- Sorbent technology/technique:
 - -Lime
 - -Trona
 - Sodium bisulfite/carbonate
 - Magnesium hydroxide
- Tie-in with mercury control
- Tie-in with SCR catalyst and air preheater operation
- Semi-continuous SO₃ emission monitoring